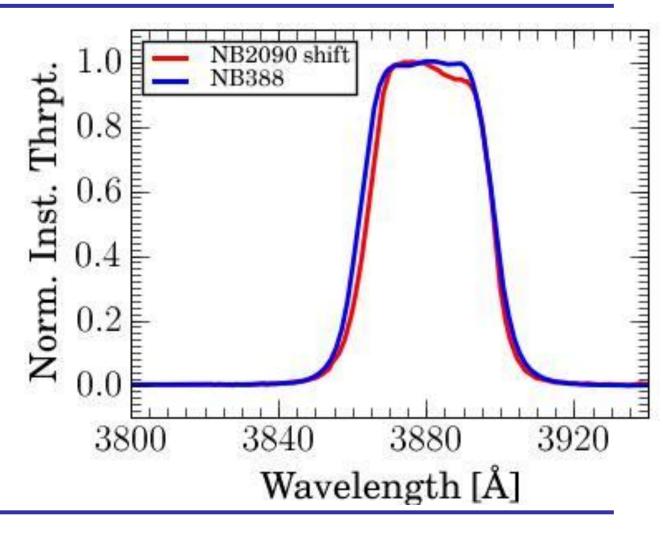
Lyman a escape fraction in star forming galaxies at high redshift

J. Miguel Mas Hesse CAB (CSIC-INTA)

Matthew Hayes, Göran Östlin, Daniel Schaerer, Claus Leitherer, Hakim Atek, Daniel

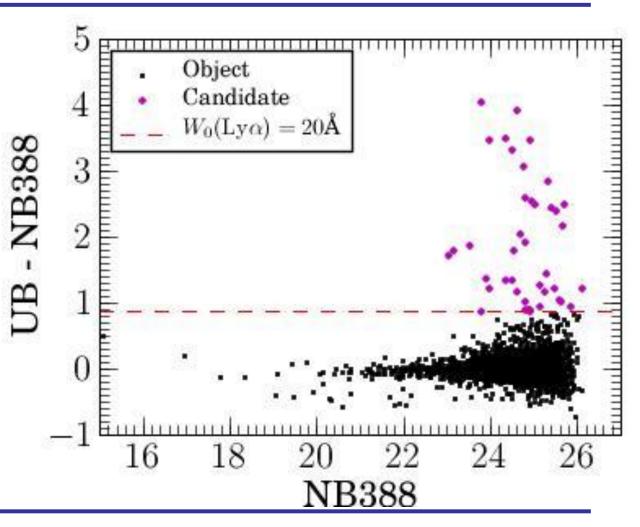
Kunth, Anne Verhamme, Stéphane de Barros & Jens Melinder

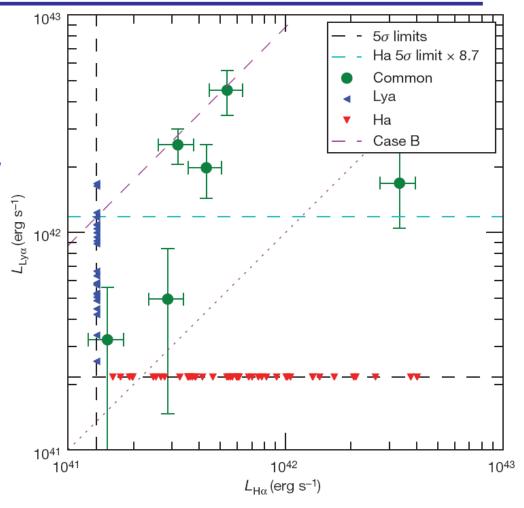
To be published in Nature, March 25th


The Double-Blind Survey

- Objective: Simultaneous Lyman α and H α surveys of the same cosmological volume at redshift $z\sim2.2$
- GOODS-S field (7.'5×7.'5):
 - HAWK-I: NB2090+K_s
 - FORS1: custom built NB388 + U+B
- Hα:
 - − AB limit ~24.6 → 6.8 ×10⁻¹⁸ erg s⁻¹ cm⁻², W₀(Hα) > 20Å
 - unobscured SFR ~1.9 M_☉ yr⁻¹
- Lyα:
 - − AB limit ~26.4, \rightarrow 7.8 ×10⁻¹⁸ erg s⁻¹ cm⁻², W₀(Lyα) > 20Å
 - unobscured SFR ~0.25 M_☉ yr⁻¹ (assuming case B Lyα=8.7×Hα)
 - absorbed (fesc = 0.13) SFR_{Ly\alpha} = SFR_{H\alpha}

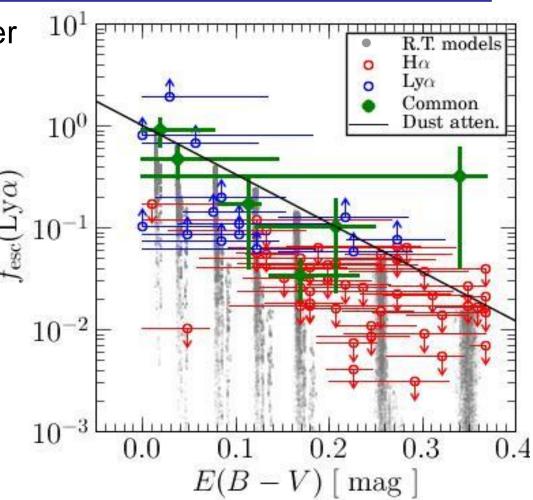
The Double-Blind Survey


The NB388 filter
 was built to cover
 the same volume
 than the existing
 NB2090.


The Double-Blind Survey

 Lyman α emitters are clearly detected at W(Lyα)>20 Å.

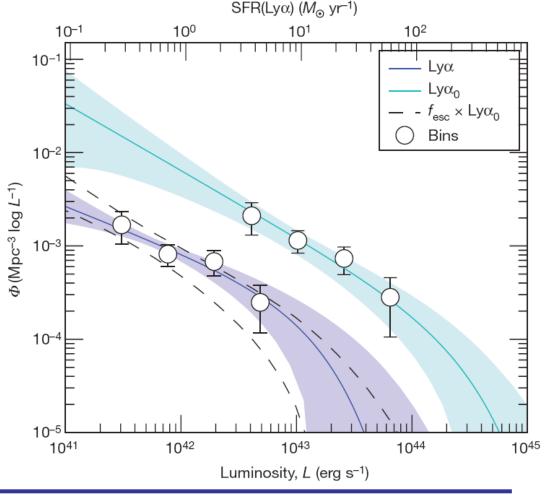
- 55 Hα emitters
- 38 Lyα emitters
 - \rightarrow Only 6 objects identified both in H α and Ly α



- We compute the escape fraction (upper/lower limits) comparing Ly α (H α) with the H α (Ly α) flux upper limits, assuming case B recombination (Ly α = 8.7×H α).
- E(B-V) is derived from multiwavelength SED fitting using the GOODS-MUSIC database (55 + 18 SED available).

Esta

- The escape fraction upper envelope is clearly correlated with E(B-V).
- Lyman α emitters dominate at low E(B-V)
- Hα emitters predominantly at high E(B-V)



- Only 10% of $H\alpha$ emitters are detected in Lyman α . Radiation transfer effects at z~2.2 (a combination of dust abundance and resonant scattering in static or outflowing neutral gas) lead to the destruction of the majority of Ly α photons, making the galaxies too weak in Lyman α to be detected.
- Only Lyman α emitters with fesc > 0.1 are detected. Their $H\alpha$ emission is too weak to be detected in our survey.

- Comparing the luminosity function of both samples we derive fesc ~0.05 (volumetric average)
 - → Only 1 in 20 Lyα photons escapes the star formation region and is potentially detected.

Conclusions

- Lyman α emission is extremely sensitive to the properties of the surrounding medium.
- H α or continuum surveys sample a very different population of star forming galaxies than Lyman α .
- Star formation rate volumetric densities derived from Ly α luminosities alone can be underestimated by 95% if these effects are not taken into account.
 - Lyman α surveys have to be treated with care.
- Even with small amounts of dust and neutral gas, the effects of radiation transfer lead to a large range of fesc values.
 - These effects are also expected at very high redshifts: z>4