-Los espectros bidimensionales, realizados situando una rendija larga y estrecha en el plano focal de un telescopio (la cual produce la primera dispersión), permiten obtener espectros de regiones específicas dentro del astro que se estudia y así, en Júpiter, podemos distinguir los cinturones de las zonas etc.
-El espectro que se presenta en la figura es lo que se denomina un espectro sin calibrar, pues el número de píxel no se ha traducido a longitud de onda y los números de cuentas por cada píxel tampoco han sido convertidos a unidades de radiancia (potencia por unidad de área perpendicular a la dirección de la luz incidente, por unidad de angulo sólido, por unidad de longitud de onda).
-El espectro que se presenta en la figura fue obtenido en el espectrógrafo Coudé del telescopio 1.5m de Calar Alto, en Junio de 1990.
-En los planetas gigantes gaseosos como Júpiter y Saturno, el metano se encuentra bien distribuido, puesto que se trata de un compuesto químico que no condensa en la atmósfera en las condiciones de presión y temperatura que allí imperan, al contrario de lo que ocurre con el vapor de agua en la Tierra, que condensa dando lugar a nubes. En otras palabras, su concentración no aumenta de forma poco predictible con la profundidad en la atmósfera, sino que se mantiene constante. Esta es la razón por la cual los espectros e imágenes en bandas del metano son muy útiles para estudiar la estructura vertical de la atmósfera de Júpiter y Saturno.
-Las bandas de absorción de otros gases, como el amoniaco, vapor de agua, etc. ofrecen también información útil para estudiar la estructura vertical, pero al tratarse de compuestos que pueden condensar a las temperaturas y presiones que imperan en los gigantes gaseosos, hemos de conocer cómo varía su concentración con la altura, lo cual depende de las condiciones meteorológicas y de otros aspectos bastante complicados.
-Hay unas bandas de absorción del metano que absorben más cantidad de luz que otras. A las que absorben más se las denomina "bandas profundas" y a las que absorben menos, "bandas débiles". Cuanto más profunda es una banda de absorción (es decir, cuanto más absorbe), la luz que del sol que le llega al planeta profundiza menos en su atmósfera.
-Por tanto, en ausencia de partículas o nubes que reflejen la luz que llega, cuanto más profunda es una banda de absorción, menos profundo llega la luz en el interior de la atmósfera del planeta. En otras palabras, las imágenes que obtenemos en las bandas profundas corresponden a los niveles más externos que podemos ver de su atmósfera, mientras que las imágenes en las bandas débiles nos proporcionan información sobre los niveles más profundos de su atmósfera.