

INFLUENCE OF INITIAL CONDITIONS ON THE REACCUMULATION OF FRAGMENTED ASTEROIDS

R. A. Alemañ^{1,2}, A. Campo Bagatin^{1,2} and D. C. Richardson³

¹Dept. Física, ISTS and ²IUFACyT (Universidad de Alicante, Spain), ³Department of Astronomy, University of Maryland (College Park, MD, U.S.A)

Why do we want to know about the internal structures of small bodies?

Scientific reasons:

- Internal structures are related to collisional history
- Clues about the formation mechanisms of planetesimals.
- Applications to space missions: AIDA

and a "social-scientific" reason:

 Strategies of mitigation of the risk of impacts on Earth.

 Rubble-piles should be common (40-100%) among asteroids in the 100s m -100 km range (Campo B., Petit and Farinella, 2001)

What are the main evidences for gravitational aggregates (rubble-piles)?

- Low bulk densities (asteroids and comets?)
- Limit on rotational periods of asteroids
- Asteroid Itokawa

How do we study that?

Our goal: try and reproduce observed features of gravitational aggregates by means of

- non-spherical components with a suitable mass spectra
- Different initial conditions for the system (volume; ang. mom.; m1/M...)

Enquiring into internal structures

Checking the obtained values of porosity, period and m1/M

Different initial conditions

Numerical simulations

Seeking relationships among all this parameters

Mass and shape distributions of asteroid components unknown.

- Lab. experiments at NASA-Ames Vertical Gun Range (July 2013) with 6 shots on irregular shape (non-spherical) targets at V~4-5 km/s.
- Synthetic mass and shape distributions drawn at random from experimental ones (This presentation is mainly on S-type density).

Exploring internal structure

- PKDGRAV DEM (Schwartz et al., 2012)
 - Make rigid aggregates with any shape (unbreakable)
 - ullet Position aggregates in space with random rotation and $oldsymbol{V}$ | E<0
 - Allow for dynamical and collisional evolution

Parent object: 5000 spherical particles

Little surprise...

Parent body "core" end position is NOT necessarily in the core of reaccumulated asteroid structure...

- "Core" (LF) is displaced by first-comer fragments
- Most of reaccumulation does not occur "upon" or "arund" LF.

.... Elongated bodies may form!!!

Itokawa - 2014HQ124 - Toutatis - Ida - *like* structures are simply likely outcomes of reaccumulation process?

© ESO 2014

The internal structure of asteroid (25143) Itokawa as revealed by detection of YORP spin-up*,**

S. C. Lowry¹, P. R. Weissman², S. R. Duddy¹, B. Rozitis³, A. Fitzsimmons⁴, S. F. Green³, M. D. Hicks², C. Snodgrass⁵, S. D. Wolters³, S. R. Chesley², J. Pittichová², and P. van Oers⁶

	Itokawa (Lowry et al, 2014)	Simulations (ρ _{comp} scaled)
ρ (kg/m³) "head"	2850±500	2850±20
ρ (kg/m³) "body"	1750±110	1910±30
m _{LF} /M	0.20	0.20-0.40

Possible natural way to get binaries (NO YORP, NO fission, ...: just gravitational reaccumulation with some initial angular momentum)

Conclusions

- 1. Largest fragments are not necessarily in the centre of grav. Aggregates
- 2. Elongated shapes may form as a <u>natural</u> reaccumulation process (no need of high spins/aborted binaries)
- 3. There seems to be some Porosity-Mass ratio and Elong.-Initial system size dependence,.
- 4. No Elong.-Period nor Elong.-Mass ratio dependence is found.
- 5. Intriguing possibility to form binary systems.

Current-future work

- Complete simulation sets for comets (67P)
- Compare to the few well determined asteroid densities

 Effects of collisions on pre-shattered asteroids

Reproduce the binary system
 Didymos (AIDA mission target)

