

Near-infrared color of small bodies from VISTA-VHS survey

Javier Licandro

Instituto de Astrofísica de Canarias

M. Popescu, D. Morate & M. De Prá

OUR TEAM

RESEARCHERS AT IAC:

- Javier Licandro (PI Investigador Titular)
- Ovidiu Vaduvescu (ING staff, IAC associate researcher)
- Julia de León (post-doc)
- Miquel Serra Ricart (staff)
- David Morate (PhD student)
- Vania Lorenzi (PhD student, TNG support astronomer)
- Mário da Pra ("Ciencia sem fronteras" PhD student)

MORE ACTIVE COOPERATIONS:

Humberto Campins (UCF – OSIRIS-Rex)

Marco Delbo & Víctor Alí Lagoa (Nice)

Fernando Moreno (IAA)

Marcel Popesku (Rumania)

Gonzalo Tancredi and Julio Fernández (UdelaR, Uruguay)

Jorge Marcio Carvano et al. (ON)

OUR SCIENCE

PRIMITIVE ASTEROIDS:

- OSIRIS-Rex Science Team
- Physical characterization of NEAs that can be space mission targets
- Inner MB primitive families (Polanas, Erigones, Sulamitis, Massalia)
- The B-type asteroids
- Outer main belt primitive asteroids

TRANSITIONAL OBJECTS (ACOs and activated asteroids)

<u>The VHS-VISTA small bodies infrared catalogue</u>
<u>J-PLUS & J-PASS (via "Ciencia sem Fronteiras" cooperation)</u>

EURONEAR

- follow-up and photometry
- Precovery
- Spectroscopy
- lowDeltaV & NASA program (follow-up spectroscopy)

TNOs and CENTAURS

MID-IR camera/spectrograph for space missions

OUR TOOLS

OBSERVATIONS:

- Spectroscopy, from 0.35 to 25 microns
- Imaging, from 0.35 to 25 microns

USE OF CATALOGUES AND DATABASES:

- WISE/NEOWISE
- SDSS
- VHS-VISTA
- Preparing for J-PLUS, J-PASS and GAIA
- NEA Precovery

MODELLING:

- Light-Scattering models
- MGM and Gaffey analysys of asteroid bands
- MC Dust-tail models
- Thermal and thermophysical models

TECHNOLOGY:

Mid-infrarred detectors for space mission

Baseline Detector for THERMAP: the uncooled 640x480 ULIS microbolometer array

Figure 2: Normalized spectral response gauge of UL 04 17 1

- ➤ Good sensitivity, low noise level in the 8-15 microns region
- ➤ Uncooled microbolometer array NO NEED FOR COOLING
- ➤ Low mass, low consumption
- ➤ Vacuum & radiation tests to TRL 5
- >FPA & FEE develop at IAC at PDR level

Raw image - Offset image = Corrected image

The VHS-VISTA small bodies catalogue

Aims

✓ Investigate the colors and the astrometric positions of the *known* Solar System objects present in the VISTA data; Popescu et al. (2015) In prep.

Objectives

- ✓ Find all known Solar system objects with apparent V magnitudes brighter than 21 present in the images of the VISTA survey;
- ✓ Retrieve their flux/magnitudes for each of the available filter. Compute the infrared colors;
- Combine the obtained data with complementary measurements, or with spectral data in order to significantly improve the image of physical properties of solar system objects;
- Retrieve their accurate astrometric position in order to improve the uncertainty of the orbit.

Images from VISTA VHS survey for 279P/La Sagra (15 Dec 2009)

The VHS-VISTA small bodies catalogue

VISTA telescope on ESO Paranal. Source: http://www.eso.org/sci/facilities/paranal/instruments/vircam.html, http://www.vista.ac.uk/Images/site/hires/VISTAandParanal.jpg

- VISTA (Visible and Infrared Survey Telescope for Astronomy) is a 4-m class
- Dedicated to wide field survey telescope for the southern hemisphere → Near infrared camera VIRCAM (VISTA InfraRed CAMera)
- VHS: VISTA Hemisphere Survey: The VHS will image almost the entire southern hemisphere

The VHS-VISTA small bodies catalogue

Sky coverage of VISTA surveys, overlaid on a 2MASS image of the whole sky.

- VHS is a panoramic wide field Infra-Red sky survey, which when combined with other VISTA Public Surveys will result in coverage of the whole southern celestial hemisphere (~19,000 deg2)
- a depth 30 times fainter than the 2MASS/DENIS in at least two wavebands (J and K).
- In the South Galactic Cap, ~4500 deg2 will be imaged deeper, including H band, and will have supplemental deep multiband grizY imaging data provided by the Dark Energy Survey (DES).
- The remainder of the high galactic latitude sky will be imaged in YJHK to be combined with the VST ATLAS survey.

Near-infrared filters used in VISTA

Transmission characteristics of filters used by VISTA. Source:

http://casu.ast.cam.ac.uk/surveys-projects/vista/technical/filter-set

VISTA VHS survey areas

- VHS ATLAS (5000 deg2): divided ~evenly between N & S Galactic caps, 60 sec. exposures in Y, J, H, and Ks
- VHS Dark Energy Survey (4500 deg2): SGC, 120 sec. exposures in J, H, and Ks
- VHS GPS (8200 deg2): Galactic Plane Survey (excl. VVV), 60 sec. exposures in J, and Ks

Each VISTA tile requires 6 sparse filled pawprints. Thus the total on-sky time for the 3 components above are 360, 720 and 1080 seconds respectively.

16 Raytheon VIRGO detectors (2048x2048 pixels) 0.34 arcsec/pix 1.5°×1° filed of view

Present sky covered by VISTA

At least one filter

Statistics of images taken in each filter.

Y,J,H,K

Flowchart

Flowchart of NICMPV pipeline

- ✓ Find the known Solar System objects that were imaged by the survey.
- ✓ Retrieve the corresponding astrometric and photometric measurements
- ✓ Validate the detections
 Post-processing of measurements for obtaining colors and
- ✓ accurate spectrophotometry

Present statistics

We worked on **86.562 images** from VISTA VHS survey, covering observations from **2009-11-04 to 2013-10-01**.

8239 square deg (any band) (~20% of the sky area)

- 9.276 (11%) measurements were done using Y filter,
- 32.796 (38%) measurements were done using J filter,
- 11.760 (14%) measurements were done using H filter,
- 32.730 (38 %) measurements were done using Ks filter.

Detected objects:

- 29.675 unique objects with detection in more than 1 filter.
- 1500 asteroids with uncertainties between 10 and 1500 arcsec could be found
- 22678 objects with observations in a single night;
- 4469 objects with observations in two nights;
- 816 objects with observations in three nights;
- 180 objects with observations in more than 3 nights

2006 objects with uncertainties below 0.1 and Y, J, H, K filters (3813 Y,J,H) 425 objects with uncertainties below 0.03 and Y, J, H, K fulter (903 Y,J,H)

One order of magnitude more than 2MASS with 60% of the survey complete

Measurement errors

Aperture photometry: 1 arcsec aperture radius

Comparison w/previous surveys

Asteroid detections in 2MASS survey(Sykes et al. (2000))

TABLE IV
Asteroid Detections

	All	SNR > 10	SNR > 20
T1	(2)	7	
J only	62	/	0
H only	0	0	0
K only	0	0	0
J & H only	1736	0	0
J & K only	20	0	0
H & K only	2	1	0
J, H, and K	885	473	212

Asteroid detections in DENIS survey (A. Baudrand et al. A&A 2001, 2004)

Table 1. Number of asteroids detected one or two times and number of associations validated.

	one time	two times	associations
I only	257	29	315
I and J only	542	75	692
I, J, and K	282	48	378
Total	1233	152	1385

Table 1. Number of asteroids detected one or two times and number of validated associations.

	One time	Two times	Associations
I only	183	8	191
I and J only	379	16	395
I, J, and K	205	14	219
Total	767	38	805

First release Second release

Distribution of observed objects

Final products

The final product of our pipeline are three catalogs:

- ✓ the measurements catalog (NICMPV-M)
- ✓ the magnitudes catalog (NICMPV-F)
- ✓ the colors catalog (NICMPV-C)

We plan to upload the catalogs to CDS-Strasbourg & other public services (e.g. MP3C), thus they will be accessible via VO services

Red dots: reflectance w/solar colors computed using solar spectrum & VISTA filter tranmission.

Black dots: reflectance w/computed Solar colors transformed from SMASS

Color-color plots & spectral classes

2MASS - Sykes et al. (2000)

1054 asteroids J,H,K 473 w/ SNR > 10

Bus-DeMeo spectral classes

Bus-DeMeo Taxonomy Key

Wavelength (microns)

Color-color plots of spectral classes: Expected colors (J-H) vs (H-K)

Bus - DeMeo classes

Color-color plots of spectral classes: observed colors (J-H) vs (H-K)

Color-color plots of spectral classes: Expected colors (Y-J) vs (H-K)

Color-color plots of spectral classes: observed colors (Y-K) vs (H-K)

SNR > 10

Color-color plots of spectral classes: Expected colors (Y-J) vs (J-H)

Color-color plots of spectral classes: observed colors (Y-K) vs (J-H)

SNR > 10

The V-types

SNR > 10

The V-types

INT visible spectroscopy of 3 V-type candidates

TNG near-ir Amici spectra of 2 of them (in reduction process,), both out of the Vesta family

Color-color plots and WISE albedo

Conclusions & further work

- ➤ We obtained the astrometric and NIR spectrophotometry of ~30.000 known small bodies imaged by VISTA-VHS survey
- Continue running the pipeline as the survey progress
- Compare the taxonomic classes with the obtained colors
- ➤ Obtained reflectances, combine with SDSS visible reflectances
- ➤ New taxonomy? (*no please no more!*)
- ➤ Derive statistical properties of different groups and families of small bodies

EXTRA SLIDES

Discovering observations of SSo

 Based on RA, DEC, MJD we used Simple Cone Search (SCS) web-service provided by SkyBoT (Berthier, 2006).
 The SkyBoT cone-search method allows to retrieve all the known solar system objects located in a field of view.

- 300 queries/hour & monitoring routine for reliability
- V = 21, limiting magniude
- 68 237 objects found, 62 340 objects with uncertainty lower than 10 arcsec

Images from VISTA VHS survey for 279P/La Sagra (15 Dec 2009)

Validation

- ✔ Remove measurements marked as deprecated, saturated, or with quality issues
- ✓ Remove measurements for which the position overlay with a background star (comparison with USNO B1.0 catalog) (within 1 arcsec)
- Algorithm to remove detections based on O-C on position and magnitudes
- Comparison of V(predicted)-J(observed)

Comparison between VHS positions and the VLBI radio reference frame [Source: R. McMahon - VISTA HEMISPHERE SURVEY DATA RELEASE 2]

Time spanning required to obtain the mganitudes in all filters.

Post-processing of the data

➤ Comparing minor planets magnitudes observed at different epochs is difficult since it needs to take into account: 1) the brightness is variable due to lightcurve variation and 2) apparent magnitude varies with heliocentric distance

> Assumptions:

- Apparent magnitude variations can be neglected for a single night
- ◆ Lightcurve variations can be ignored for intervals less than 15 minutes (0.01 day)
- Asteroids surface is compositionally homogeneous, thus we can compare colors obtained at different epochs

Post-processing:

- a) Average measurements obtained with the same filter in an interval less than 15 minutes
- b) Select magnitudes obtained with different filters such that the interval between observations to be minimum
- c) Obtain colors by combining the closest in time observations from two different filters
- d) Combine colors obtained at different epochs

Imaging strategy

Statistics of durations for obtaining stackframes

- Accurate timing is crucial for Solar System objects (SSo)
- ◆ The movment rate of SSos ranges from tens of miliarcsec/minute (for transneputian objects) to several arcsec per minute for near-Earth asteroids (NEAs), beeing typical 0.3 arcsec/min for Main Belt Asteroids (MBA)
- Apparent magnitude vary with time

Trail length of the observed asteroids.

Imaging strategy

Detections retrieval

- The VISTA Data Flow System VDFS (Emerson et al. 2004) is the pipeline that accomplish the end-to-end requirements of the VISTA survey
- All the detections (a detection is referring to a single object extracted from a single image in a single filter) found in VISTA survey images are stored in the vhsDetection table
- The cross-matching imply a square box search centered at the predicted position in vhsDetection table. The side of the box is 6σ , but no less than 2 arcsec
- 332 111 detections corresponding to 47 666 objects

[Data tables of VISTA. Source: http://horus.roe.ac.uk/vsa/dboverview.html] Freeform SQL used to access the data.

