

Early Science Operations Analysis for the Jupiter Icy Moons Explorer (JUICE) mission

Encuentro Español de Ciencias Planetarias y Exploración del Sistema Solar Junio 2015, Alicante

<u>Alejandro Cardesín</u>, Nicolas Altobelli, Marc Costa, Claire Vallat, David Frew, Miguel Almeida (ESA/ ESAC)

Pau Hebrero (UPM/ETSIA)

European Space Agency

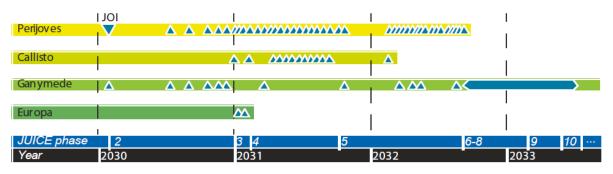
Present science started long ago...

Deasthe (4000% \2004 \2045

European Space Agency

Future science starts now! JUICE (2000's...)2022→2033

SCIENCE GOAL: Emergence of habitable worlds around gas giants; Jupiter as an archetype for gas giants


- First Large-class mission in ESA's Cosmic Vision 2015-2025 programme
- Launch in 2022, nominal science mission 2030-2033.
- Total mission duration 11 years: 7.6 years cruise + 3.5 years in Jupiter system.

Mission phases:

- 1. Launch and cruise(7.6 years)
- 2. JOI, and energy reduction for transfer to <u>Callisto</u> (11 months)
- 3. Europa flybys(36 days)
- 4. <u>Jupiter</u> High Latitude Phase (200 days)
- **5**. Transfer to Ganymede(11 months)
- 6-10. <u>Ganymede</u> science phases: (282 days)

Elliptic, GCO 5000km, Elliptic, GCO 500km, GCO 200km

The JUICE mission Mission Drivers

Spacecraft design drivers:

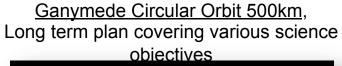
- Long distance to Jupiter
- Only solar electric power
- High ΔV requirement.
- 3-axis stabilized spacecraft
- Radiation protection

DATA BUDGET LIMITATION PAYLOAD POWER LIMITATION

Science Payload (11 instruments):

- Remote Sensing :
 - JANUS (Imager)
 - MAJIS, UVS, SWI (spectrometers/imagers)
- Geophysics:
 - GALA (Laser Altimeter)
 - RIME (Radar Sounder)
 - 3GM (Radio Science)
 - PRIDE (Very-Long Baseline Interferometry)
- In-situ :
 - PEP (Particle detectors)
 - JMAG (Magnetometer)
 - RPWI (Radio and plasma waves)

The JUICE mission Feasibility Assessment: Sizing Cases


Mission phases:

1. Launch and cruise(7.6 years)2. JOI, and energy reduction for transfer to Callisto(11 months)3. Europa flybys(36 days)4. Jupiter High Latitude Phase(200 days)5. Transfer to Ganymede(11 months)6-10. Ganymede science phases:(282 days)Elliptic, GCO 5000km, Elliptic, GCO 500km, GCO 200km

DATA BUDGET LIMITATION PAYLOAD POWER LIMITATION

Two Europa flybys All instruments observing simultaneously

an Space Agency

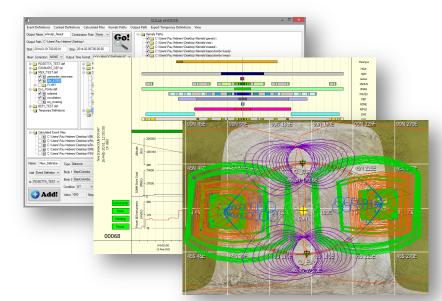
JUICE SciOps Analysis Basic ESAC support so far

Science Operations support not foreseen for JUICE in early stages

Since January 2015: ESAC involved with very limited resources

INPUTS

- Mission and Payload Science/Technical documentation
- High level concept and basic operations scenarios
- Interaction with Project Scientist and Science Working Team

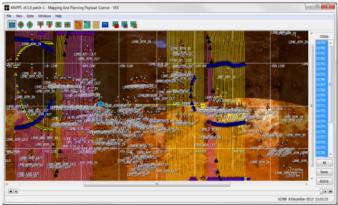

BASIC DEVELOPMENT AT ESAC:

- Small SciOps team with multi-mission experience
- Setup "recycled" systems from other missions
- Preliminary modeling for spacecraft and payload
- Preliminary geometric analysis for the mission

OUTPUT:

- Science Opportunity Analysis
- Operational analysis of science scenarios
- Assessment of science goals

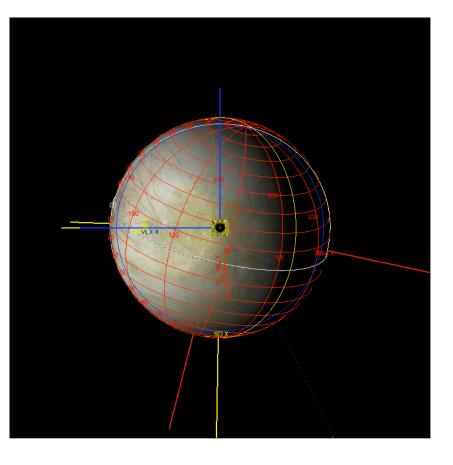
Time before CA	-60 min to	-45 min to	-32 min to	-30 min	-17 min	-13 min	-7 min	
	- 45 min	-32 min	- 30 min					
Time after CA	+45 min to	+32 min to +45	+ 30 min to	+ 30 min	+17min	+13 min	+7 min	
	+60 min	min	+ 32 min					
	1st medium	2nd medium	Transition to					
	resolution	resolution slew	"true" nadir					
	slew		pointing					
Altitude (km)	12,000 to	9000 to 6000	6000 to	5700	4300	2000	1000	
	10,000		5700					
Pointing mode	4.2* W to E In	8" E to W in 780 s,	Slew along	Nadir pointing.	Nadir pointing.	Nadir pointing.	Nadir pointing.	
	600 s. 4.5*	0.5" offset to the N	Y and Z to	Push-broom	push-broom	push-broom	push-broom	
	offset to the	(along Z)	nadir		-	-	1	
	N (along Z)		pointing					
JANUS	-60 min:	-45min:	STBY, 28.7	Mode: SCIENCE-	Mode: SCIENCE-	Mode: SCIENCE-	Mode: SCIENCE-	
(excluding	Mode:	Mode: SCIENCE-	w	EFB-CA3	EFB-CA1	EFB-CA4	EFB-CA5	
RIME-requested	SCIENCE-EFB-	EFB-CA2		35.5W, 660 kbps	35.5W, 390 kbps	35.5, 1080 kbps	35.5 W, 4000 kbp	
DTM)	CA1	35.5W, 600 kbps						
	35.5W, 390							
	kbps							
	-50 min: STBY.							
	28.7 W							
MAJIS	Surface scan	-50min to -45min	Mode: STBY	Surface	Surface	Motion	Surface	
	Duration: 600	(exosphere	18.9W, o	Push-broom	Push-broom	compensation	Push-broom	
	s	observations):	kbps	MODE1x1_1sec_RE	-17 min+17 min:	initiated	-17 min+17 mi	
	MODELVI 100	MODELVI Gran DE		1/22 /14/ 2 2064b/r	MODELVI SOOMA	Curface	MODELVI SOOM	



Science Operations Tools

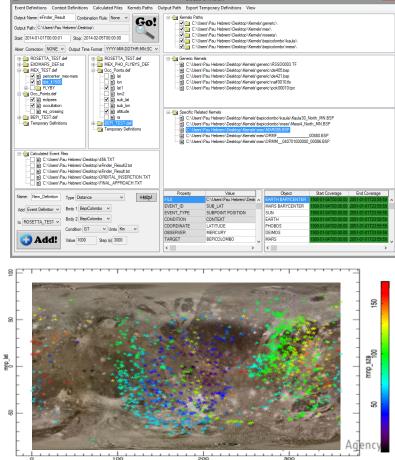
MAPPS/EPS

- Mission Analysis and Payload Planning System: simulation and visualization.
 - Geometry computation for Spacecrafts, Instruments and Targets
 - Visualization of multiple parameters and overlays in 2D
 - Simulation of events and operational timelines
- Experiment Planning System: payload commanding modelling.
 - Payload and spacecraft resources, sequences and transitions.
 - Generation of command level sequences
 - Payload planning files
- Used operationally by all ESA planetary missions:
 - SMART-1, VEX, MEX, Rosetta, BepiColombo, Solar Orbiter, Exomars



Solution Science Operations Tools

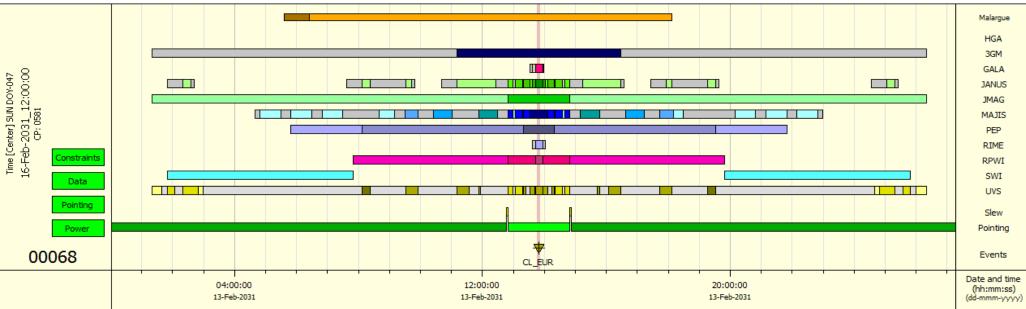
SOLab (Solar System Science Operations Laboratory):


- Research project for geometry computation
- Quick analysis and 3D visualization of observations
- Used by most ESA planetary missions: VEX, MEX, Exomars, JUICE

SOLab eFinder:

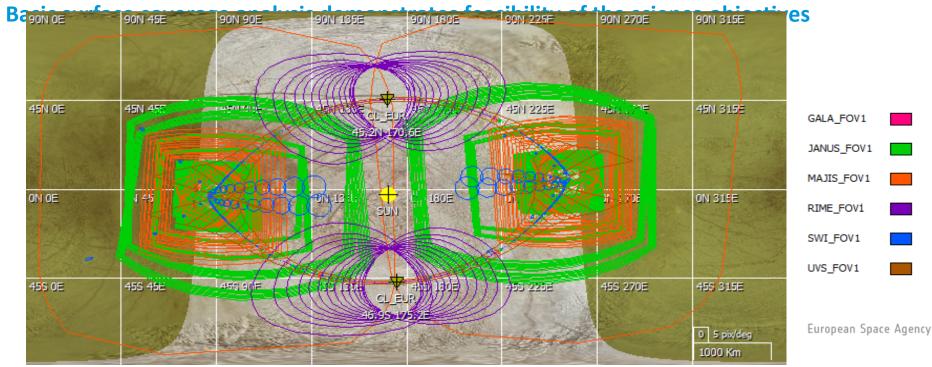
Science Opportunity Analysis

20 mnp_lon


Europa Fly-by analysis Scientific and Operational Feasibility assessment

Input High Level Scenario Definitions (from ESA Technical Note)

Time before CA	-60 min to - 45 min	-45 min to -32 min	-32 min to - 30 min	-30 min	-17 min	-13 min	-7 min	+7 min to + 60 min
Time after CA	+45 min to +60 min	+32 min to +45 min	+30 min to +32 min	+30 min	+17min	+13 min	+7 min	
	1st medium resolution slew	2nd medium resolution slew	Transition to "true" nadir pointing					
JANUS	-60 min: Mode: SCIENCE- EFB-CA1 35.5W, 390 kbps	-45min: Mode: SCIENCE- EFB-CA2 35.5W, 600 kbps	STBY, 28.7 W	Mode: SCIENCE- EFB-CA3 35.5W, 660 kbps	Mode: SCIENCE- EFB-CA1 35.5W, 390 kbps	Mode: SCIENCE- EFB-CA4 35.5, 1080 kbps	Mode: SCIENCE- EFB-CA5 35.5 W, 4000 kbps	The same sequence In reverse order


Output Scientific and Operational feasibility analysis

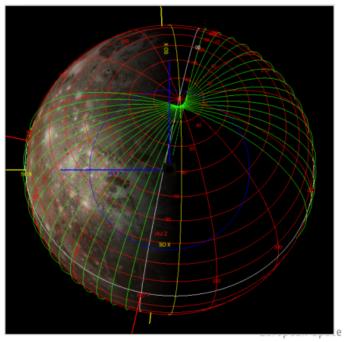
Europa Fly-by Analysis Conclusions of Feasibility Assessment

- Simulations confirm feasibility of the proposed observation scenarios for both flybys
 - Payload data simulation predicts <u>73Gbit of science data</u> for each fly-by scenario.
 - Downlink simulation requires at least <u>3 months to download</u> all fly-by data
 - Payload power simulation predicts <u>consumption of 180Watts</u> in average (peaks up to 275W)
 - Accumulated energy required is <u>4500Wh for each fly-by</u> (input for SC battery assessment)

GCO500 Sizing Case analysis (old) Preliminary Study for Yellow book (2013)

SAME INPUTS FOR SCIENCE OPERATIONS STUDY

- High level concept and basic operations scenarios
- Mission and Payload Science/Technical documentation
- Interaction with Project Scientist and SWT representatives

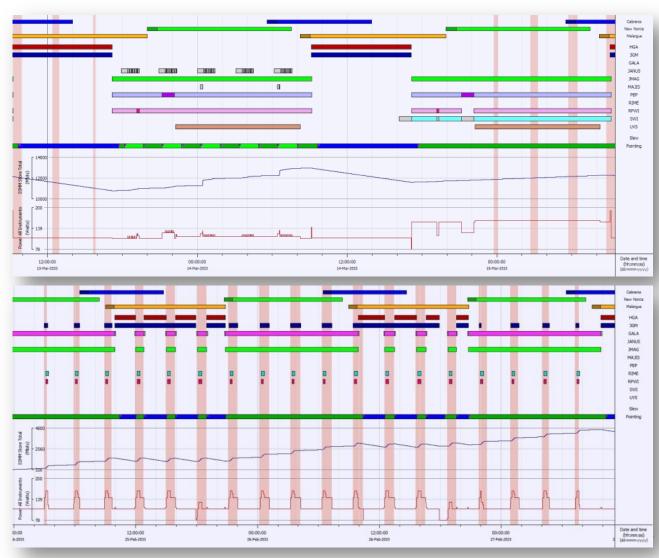

JMAG		Mode Name	Off	Grad				 Grad mode only-close to continuous - 16 hours / day (when no D/L). Remark: Strategy to be discussed within WG#3 in future steps. 		
	IAG	Datarate (Mbps)		0,002413			14			
		Power (₩)	2,48	7,11						
		Mode Name	Survival	Standby	Mode 1x1			Mode 1x1 observations on ROI only : duration = 86 s observation. 493 Mbits/cube compressed for science.		
МА	uis	Datarate (Mbps)			5,74		33	Remark: the plan is one acquisition of 86 s every 12 orbits (averaged) in order t not exceed the total data volume allocation . If possible, operation on day side		
		Power (₩)	6,12	14.25	24,3			only and limited to low latitudes (say <50 deg). Switch-on procedure - 10 minutes		
PEP		Mode Name	Survival	Standby	Low	High		 Low mode close to continuous when no D/L (15 hours/day) High mode randomly when no D/L (1 hour/day). 		
	EP	Datarate (Mbps)			0,0016	0,0081	11,8	Remark: Strategy to be balanced within WG#3 in future steps.		
		Power (₩)	8	8	34,5	51				

VERY DIFFERENT SCIENCE OPERATIONS CONSIDERATIONS

- LONG TERM SCIENCE ANALYSIS:
 - Several months of observations
 - 3 different science campaigns (Geophysics/Remote/In-Situ)
- SPECIFIC PAYLOAD REQUIREMENTS:
 - Illumination conditions (JANUS, MAJIS),
 - Jovian radio noise (RIME)
- RESOURCE CONSTRAINTS:
 - Data Volume (<147Gbit, 1.4Gb/day)
 - Data Downlink 8h/day on Malargue ground Station
 - Payload Power Consumption <170W

SIMILAR OUTPUT:

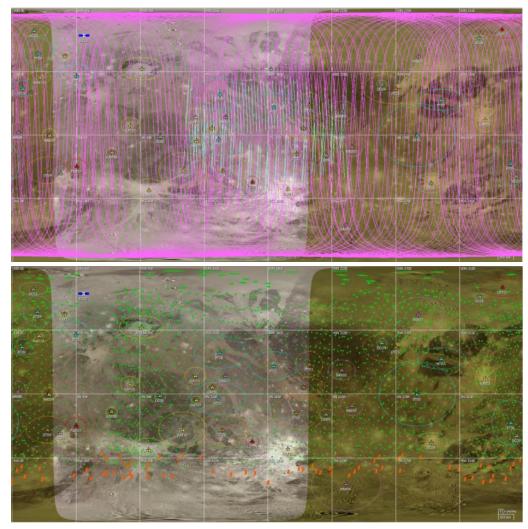
- Operational feasibility analysis of science scenarios (MAPPS)
- Assessment of science goals


e Agency

GCO500 Sizing Case Analysis Long Term Planning (~100days)

Simulations confirm feasibility of the proposed Long Term Plan

- **3 science cases separated:** Remote Sensing, In Situ, Geophysics
- Event driven operations: illumination, Jupiter occultations, ...
- Payload resource computation: data volume, power, comms, ...
- Science and Resource Optimization: coverage, data volume, etc

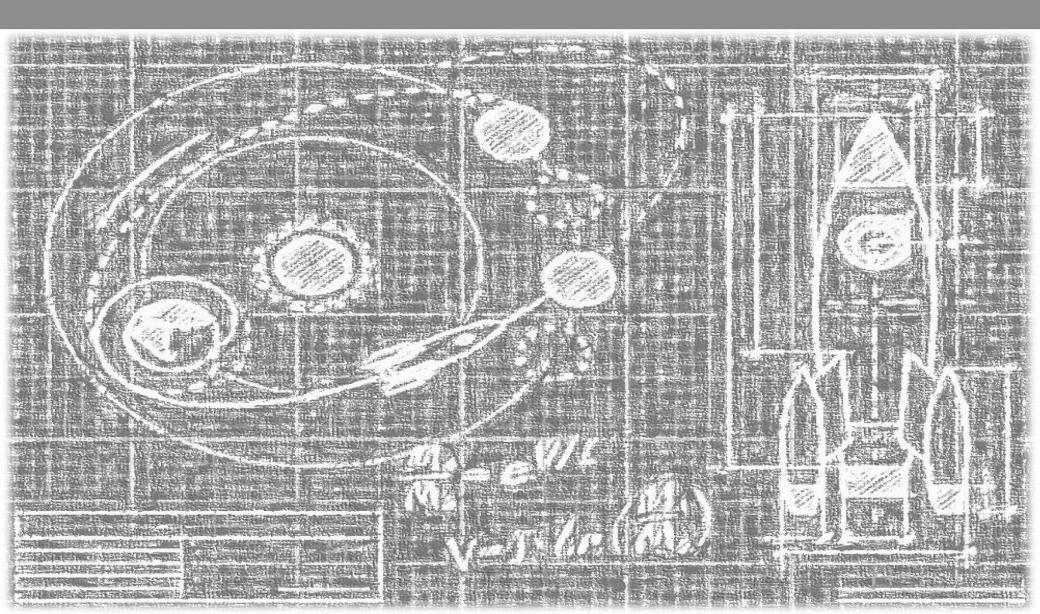

GCO500 Sizing Case analysis Surface coverage analysis for GCO500

Surface coverage analysis demonstrates feasibility of the science objectives

- MAPPS simulation of geophysics observations.
 - GALA coverage in purple.
 - RIME coverage in blue

- Basic simulation of remote sensing coverage.
 - JANUS (green) ~2% surface coverage *
 - MAJIS (orange) <1 % surface coverage *

• Science Operations Team at ESAC useful support to JUICE study/definition phases


• Early science operations analysis is needed!

- To demonstrate feasibility of mission science objectives
- To estimate the adequacy of spacecraft and payload resources
- To provide useful input to industry for the sizing of the spacecraft
- Demonstrated that existing multi-mission systems and expertise can be easily reused
 - Successful implementation with minimal resources!
 - We encourage:

re-use of expertise, multi-mission involvement, in-house development

Thanks for your attention

