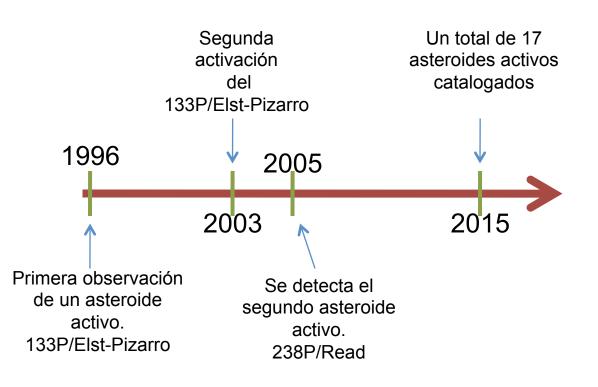
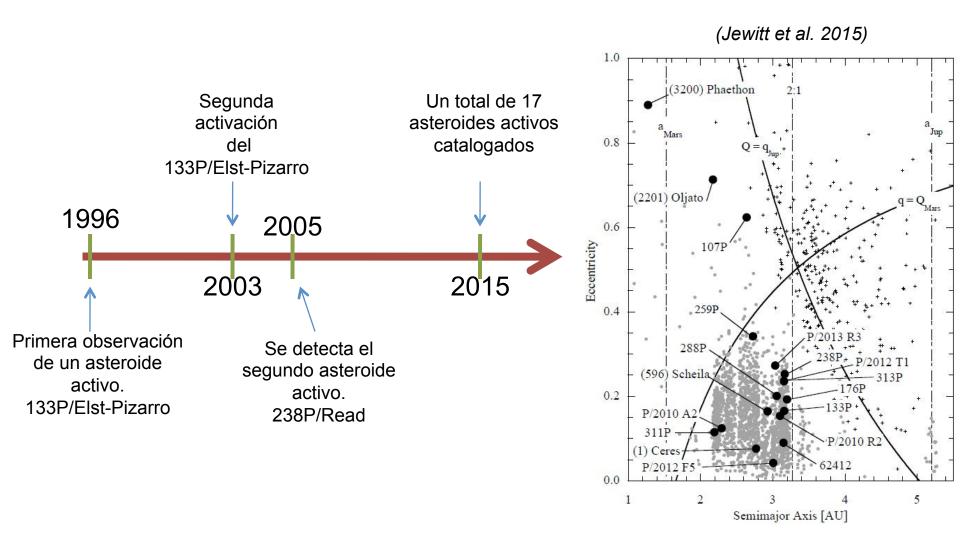

Activación del Main-Belt Comet 313P/Gibbs

F.J. Pozuelos (1), A. Cabrera-Lavers (2,3), J. Licandro (2,3) y F. Moreno

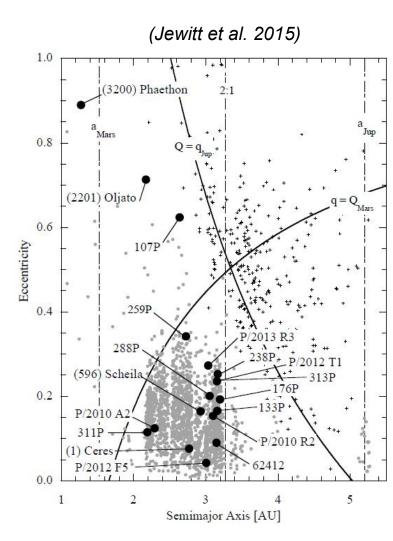

- (1) Instituto de Astrofísica de Andalucía-CSIC
- (2) Instituto de Astrofísica de Canarias
- (3) Departamento de Astrofísica, Universidad de la Laguna


Contenidos

- 1.- El problema de los Asteroides Activos
- 2.- Activación de 313P/Gibbs
- 3.- Modelo
- 4.- Resultados
- 5.- Conclusiones

¿Cometas entre Asteroides?

¿Cometas entre Asteroides?



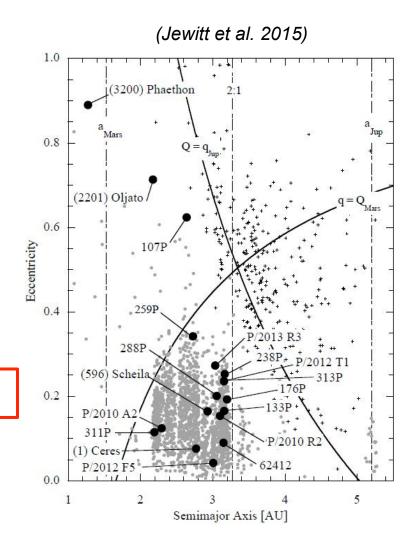
¿Cometas entre Asteroides?

¿Mecanismos de activación?

-Impacto -ruptura rotacional

-Sublimación de hielos

¿Cometas entre Asteroides?


¿Mecanismos de activación?

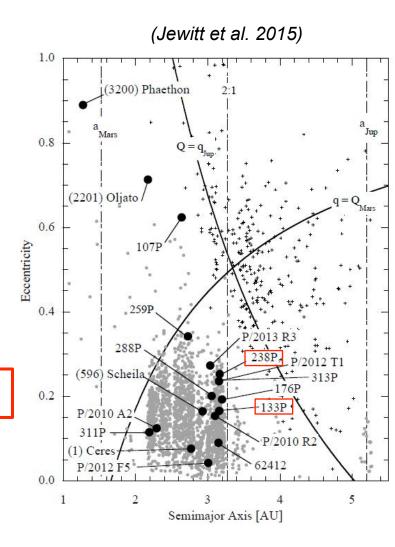
-Impacto

-ruptura rotacional

-Sublimación de hielos

Main-Belt Comets

¿Cometas entre Asteroides?


¿Mecanismos de activación?

-Impacto

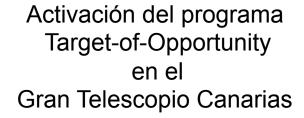
-ruptura rotacional

-Sublimación de hielos

Main-Belt Comets

2.- Activación de 313P/Gibbs

Descubierto el 24 de Septiembre de 2014


2.- Activación de 313P/Gibbs

Descubierto el 24 de Septiembre de 2014

Activación del programa Target-of-Opportunity en el Gran Telescopio Canarias

2.- Activación de 313P/Gibbs

Descubierto el 24 de Septiembre de 2014

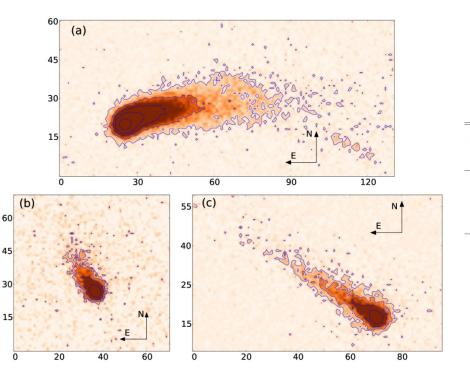
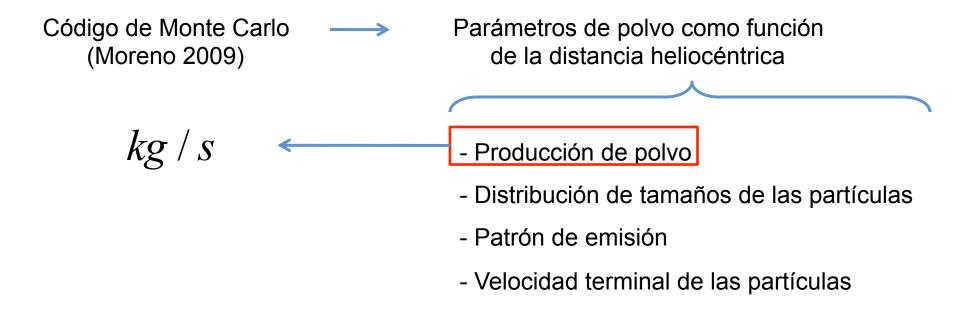
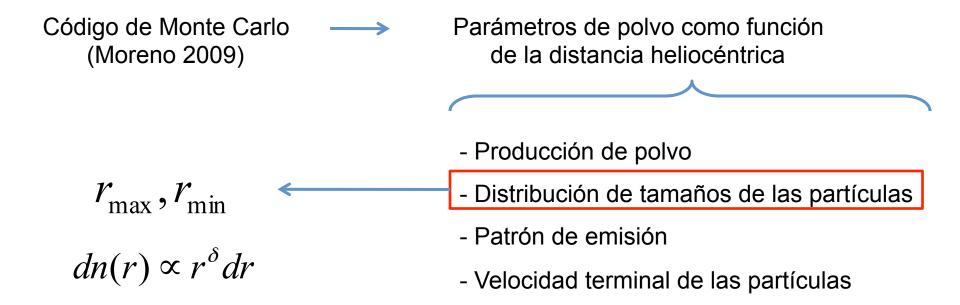


Table 1. Log of the Observations.


Observation Date (UT)	Days from perihelion ^a	r_h (AU)	Δ (AU)	Phase angle (°)	Position angle (°)	Resolution (km pixel^{-1})
2014 Sept. 29.07	31.6	2.398	1.429	7.9	317.7	263
2014 Nov. 4.05	67.5	2.419	1.565	14.8	43.5	288
2014 Dec. 16.85	110.3	2.464	2.030	22.7	63.2	373


Código de Monte Carlo (Moreno 2009) Parámetros de polvo como función de la distancia heliocéntrica

Código de Monte Carlo (Moreno 2009)

Parámetros de polvo como función de la distancia heliocéntrica

- Producción de polvo
- Distribución de tamaños de las partículas
- Patrón de emisión
- Velocidad terminal de las partículas

Código de Monte Carlo
(Moreno 2009)

Parámetros de polvo como función
de la distancia heliocéntrica

- Producción de polvo
- Distribución de tamaños de las partículas

Emisión
isótropa o anisótropa

- Velocidad terminal de las partículas

Código de Monte Carlo (Moreno 2009)

Parámetros de polvo como función de la distancia heliocéntrica

- Producción de polvo
- Distribución de tamaños de las partículas
- Patrón de emisión

 $v(\beta) = v_0 \beta^{\gamma}$

 $\beta \propto \frac{1}{2\rho r}$

- Velocidad terminal de las partículas

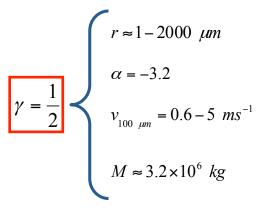
Código de Monte Carlo (Moreno 2009)

Parámetros de polvo como función de la distancia heliocéntrica

- Producción de polvo
- Distribución de tamaños de las partículas
- Patrón de emisión
- Velocidad terminal de las partículas

Proponemos 3 modelos

$$v(\beta) = v_0 \beta^{\gamma}$$


Código de Monte Carlo (Moreno 2009)

Parámetros de polvo como función de la distancia heliocéntrica

- Producción de polvo
- Distribución de tamaños de las partículas
- Patrón de emisión
- Velocidad terminal de las partículas

Proponemos 3 modelos

$$v(\beta) = v_0 \beta^{\gamma} \longrightarrow \gamma = \frac{1}{2}; \frac{1}{8}; \frac{1}{20}$$

$$r \approx 1 - 2000 \ \mu m$$

$$\alpha = -3.2$$

$$v_{100 \ \mu m} = 0.6 - 5 \ ms^{-1}$$

$$M \approx 3.2 \times 10^6 \ kg$$

$$\gamma = \frac{1}{2} \begin{cases} r \approx 1 - 2000 \ \mu m \\ \alpha = -3.2 \\ v_{100 \ \mu m} = 0.6 - 5 \ m s^{-1} \\ M \approx 3.2 \times 10^6 \ kg \end{cases} \qquad \gamma = \frac{1}{8} \begin{cases} r \approx 0.1 - 2000 \ \mu m \\ \alpha = -3.1 - (-3.3) \\ v_{100 \ \mu m} = 0.4 - 1.9 \ m s^{-1} \\ M \approx 3.4 \times 10^6 \ kg \end{cases}$$

$$\gamma = \frac{1}{2}$$

$$\alpha = -3.2$$

$$v_{100 \ \mu m} = 0.6 - 5 \ ms^{-1}$$

$$M \approx 3.2 \times 10^{6} \ kg$$

$$\gamma = \frac{1}{2} \begin{cases} r \approx 1 - 2000 \ \mu m \\ \alpha = -3.2 \\ v_{100 \ \mu m} = 0.6 - 5 \ m s^{-1} \\ M \approx 3.2 \times 10^6 \ kg \end{cases} \qquad \gamma = \frac{1}{8} \begin{cases} r \approx 0.1 - 2000 \ \mu m \\ \alpha = -3.1 - (-3.3) \\ v_{100 \ \mu m} = 0.4 - 1.9 \ m s^{-1} \\ M \approx 3.4 \times 10^6 \ kg \end{cases} \qquad \gamma = \frac{1}{20} \begin{cases} r \approx 0.1 - 2000 \ \mu m \\ \alpha = -3.1 - (-3.2) \\ v_{100 \ \mu m} = 0.4 - 0.9 \ m s^{-1} \\ M \approx 2.9 \times 10^6 \ kg \end{cases}$$

$$\gamma = \frac{1}{20}$$

$$\alpha = -3.1 - (-3.2)$$

$$v_{100 \ \mu m} = 0.4 - 0.9 \ ms^{-1}$$

$$M \approx 2.9 \times 10^6 \ kg$$

$$\gamma = \frac{1}{2} \begin{cases} r \approx 1 - 2000 \ \mu m \\ \alpha = -3.2 \\ v_{100 \ \mu m} = 0.6 - 5 \ m s^{-1} \\ M \approx 3.2 \times 10^6 \ kg \end{cases} \qquad \gamma = \frac{1}{8} \begin{cases} r \approx 0.1 - 2000 \ \mu m \\ \alpha = -3.1 - (-3.3) \\ v_{100 \ \mu m} = 0.4 - 1.9 \ m s^{-1} \\ M \approx 3.4 \times 10^6 \ kg \end{cases} \qquad \gamma = \frac{1}{20} \begin{cases} r \approx 0.1 - 2000 \ \mu m \\ \alpha = -3.1 - (-3.2) \\ v_{100 \ \mu m} = 0.4 - 0.9 \ m s^{-1} \\ M \approx 2.9 \times 10^6 \ kg \end{cases}$$

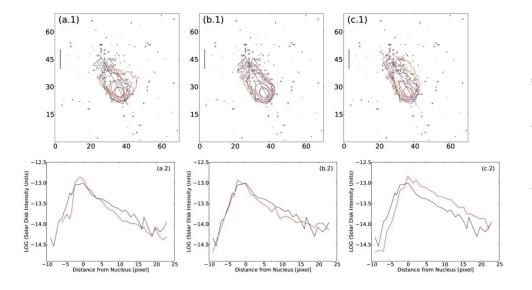


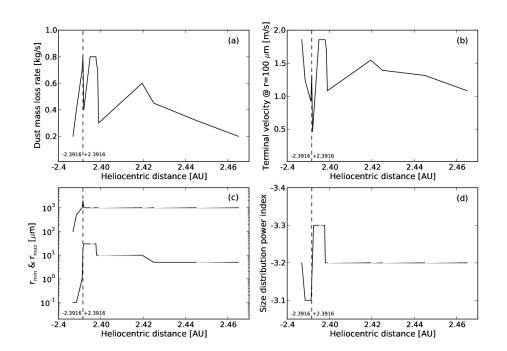
Table 2. Fitting quality of the observed images.

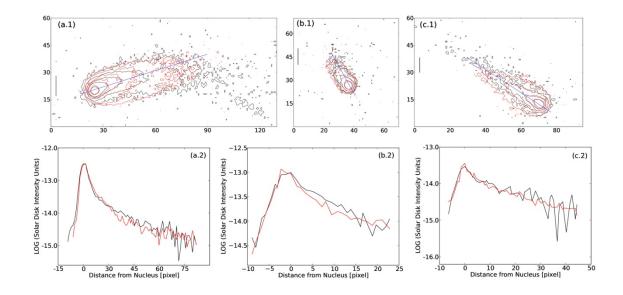
Model	γ	2014 Sept. 29.07	2014 Nov. 4.05	2014 Dec. 16.85
I II III	1/2 1/8 1/20	$1.2 \times 10^{-14} \\ 8.2 \times 10^{-15} \\ 2.2 \times 10^{-14}$	$9.7 \times 10^{-15} \\ 8.1 \times 10^{-15} \\ 1.2 \times 10^{-14}$	$3.3 \times 10^{-15} $ $2.3 \times 10^{-15} $ $2.6 \times 10^{-15} $

$$\gamma = \frac{1}{8}$$

$$\alpha = -3.1 - (-3.3)$$

$$v_{100 \ \mu m} = 0.4 - 1.9 \ ms^{-1}$$


$$M \approx 3.4 \times 10^6 \ kg$$


$$\gamma = \frac{1}{8}$$

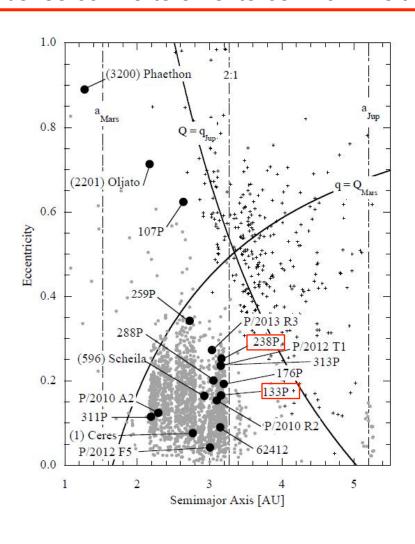
$$\alpha = -3.1 - (-3.3)$$

$$v_{100 \ \mu m} = 0.4 - 1.9 \ ms^{-1}$$

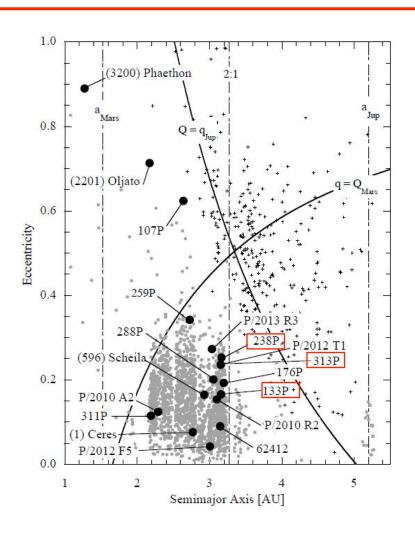
$$M \approx 3.4 \times 10^6 \ kg$$

- -El mejor modelo se obtiene para $\gamma = \frac{1}{8}$
- -Un impacto pequeño expone hielo a la radiación solar
- -La sublimación de hielos como causa más probable de la actividad sostenida en el tiempo

- -El mejor modelo se obtiene para $\gamma = \frac{1}{8}$
- -Un impacto pequeño expone hielo a la radiación solar
- -La sublimación de hielos como causa más probable de la actividad sostenida en el tiempo


- -Jewitt et al. (2015) y Hsieh et al. (2015) Resultados en acuerdo
- -Hui & Jewitt (2015) ----> Pre-descubrimiento en 2003

- -El mejor modelo se obtiene para $\gamma = \frac{1}{8}$
- -Un impacto pequeño expone hielo a la radiación solar
- -La sublimación de hielos como causa más probable de la actividad sostenida en el tiempo


- -Jewitt et al. (2015) y Hsieh et al. (2015) Resultados en acuerdo
- -Hui & Jewitt (2015) ----> Pre-descubrimiento en 2003

313P/Gibbs se convierte en el tercer Main-Belt Comet

313P/Gibbs se convierte en el tercer Main-Belt Comet

313P/Gibbs se convierte en el tercer Main-Belt Comet

Gracias!

Preguntas?