Nebular continuum correction in the chemical analysis of HII galaxies

PhD Candidate: Vital G. Fernández Supervisors: Elena Terlevich, Ángeles Díaz

Introduction:

Introduction:

• All primordial abundances are a function of the Baryons to photons ratio:

• HII galaxies experience a linear increase in Helium abundance with Z

¹[Carigi, Peimbert (2001)] ²[Steigman et al (2008)]

Workflow

• Start with the data reduction and finish with the linear regression. In between deal with the systematic uncertainties:

• In this presentation we describe the nebular continuum calculation

Nebular continuum

t in very young BCD galaxies, symbiotic stars, young

[1]

[3]

¹[Perez-Montero, 2010] ²[Skoopal (2005)] ³[Reines et al (2009)]

Free-free component:

¹[Brown, Mathews (1970)]

Free-bound component:

 Important contributions from

$$\gamma_{n,\nu,FB} = \frac{4\pi h}{c^2} \left(\frac{h^2}{2\pi m kT}\right)^{3/2} e^{-\epsilon/kT} \frac{\omega^*}{\omega^+} \nu^3 \sigma_{\nu} \left(X*\right)$$

- Coefficients can be found tabulated in [Ercolano and Storey (2006)]
- Mainly optical contribution

Bound-bound component:

Nebular Continuum: Bound-Bound component Also referred as the two-10-39 photon continuum $j_{\nu,2q} = \frac{1}{4\pi} n_H n_e \gamma_{2q}$ Produced by the decay of the $2^{2}S_{1/2}$ level of H and He+ and $\frac{1}{2}$ also the $2^{1}S_{0}$ level of He Our model Important contribution in the ultraviolet 10^{4} Wavelength (Å)

¹[Nussbaumer and Schmutz (1984)]

Total nebular emission:

Nebular Hidrogen Continuum 10^{-38} $s^{-1} \ Hz^{-1} \ Hz^{-1}$ H^0 FB component $\lambda_{r} = 10^{-42} m^{-3}$ BB H^0 BB component FF H^+ FF component Total H emission 10⁻⁴⁵ $\frac{10^{3}}{10^{3}}$ 10^{4} Wavelength (Å)

Calibration:

Calculate electronic temperature \bullet from the balmer jump [2] [3]:

$$T_{Bac} = 368 \times \left(1 + 0.259y^{+} + 3.409y^{2+}\right) \left(\frac{BJ}{H11}\right) [K]$$

¹[Skopal (2005)] ²[Hägele et al. (2006)] ³[Liu et al. (2001)]

Balmer jump Blue Balmer jump Red

Object SHOC579 Balmer jump

Calibration:

• Using emission line intensity from spectra:

¹[Zanstra (1927)]

Evolution with T_e and $F(H_\beta)$:

• Calibration using "Zanstra" method:

• In the optical and near infrared regions, for HII galaxies, the error in the nebular continuum will be weakly dependent on the Temperature. Stronger dependence on the recombination line flux.

Conclusions

- The literature offers a great work on this continuum, which is important in young stellar bursts.
- The calibration can be accomplished using different approaches

- The methodology accounts for:
 - Electron temperature
 - He⁺, He⁺⁺ fractions
 - FF_{H+, He+, He++}, FB_{H, He, He+}, BB_H I fractions

- The methodology doesn't account for:
 - Escaping photons
 - Neutral hydrogen fraction
 - State of the art atomic coefficients
 - BB_{He, He+} emission

Share the methodology

IRAF video tutorials (9): Longslit spectra reduction

http://nublado.org/wiki/VideoPage To be

• PyNeb (1): Installation

To be uploaded...

 Program written in python which will become available with all the methodology used in this project: Measure emission lines, calculate physical properties and calculate continuum...

THANK YOU!

