
Provenance

Provenance Views
•  Data
–  data quality and history inspection
– mostly recorded in FITS HISTORY headers
–  exposed in a text file

•  Experiment
–  definition provenance

- structure / flowchart view of the whole
–  deployment provenance

- execution environment
–  execution provenance

- profiling and exec. logs
- functions calls and variables
- input / intermediate / output values	

•  Evolution
à à à versioning

Provenance Views

Views Evolution Prov
Deployment Prov

Application/User Levels in CTA
•  Simulations
–  execution/evolution provenance

•  Pipelines on raw data
–  execution provenance (exec. logs and profiling)

•  Public DL3 à DL5 Archive
–  data provenance

•  User Desktop (non-controlled environment)
–  definition provenance

- structure / flowchart view of the experiment
–  deployment provenance

- environment
–  evolution provenance

	- versioning tools	

		Use	Cases		

Provenance Capture in the Local Desktop

#		CIG		Vhel		e_Vhel		r_Vhel		Dist		MType		e_MType		OptAssym		r_MType		Bmag		e_Bmag	
							1			7299.0				3.0			1				96.9				5.0			1.5			1			1				14.167			0.271			0.173		0.571		0.040		13.383				
							2			6983.0				6.0			2				94.7				6.0			1.5			0			1				15.722			0.324			0.255		0.278		0.031		15.157		
							3																																4.0			1.5			0			1				16.057			0.507			0.246		0.354									15.457				
							4			2310.0				1.0			3				31.9				3.0			1.5			0			1				12.818			0.424			0.252		0.863		0.017		11.685				
							5			7865.0			10.0			3			105.9				0.0			1.5			0			1				15.602			0.364			0.225		0.131		0.118		15.128					
						72			5164.0				9.0			2				68.5				5.0			1.5			1			1				14.445			0.325			0.315		0.367		0.028		13.735		

Provenance Capture in the Local Desktop

Scripts orchestrate analysis and connect data and tools
Python scripts as a glue

Challenges
–  encode control/loops
–  level of granularity
–  non-controlled environment

Lesson learned
–  prov. capture /inspection /analysis MUST be:

•  non-intrusive
•  user-friendly

Provenance in script-based methodology

ctapipe

noWorkflow Tool
Captures process provenance for a data analysis working methodology
based on python scripts and trial/error exploration runs.

•  Provenance storage: SQLite DB + File System
•  Provenance sharing of a local working session: .noworkflow folder
•  Jupyter Notebooks support

Provenance capture of what happens inside a Python script

•  Definition Provenance

–  Abstract Syntax Tree Analysis (code parsing / heuristics)

•  Deployment Provenance
–  Python modules: os, socket, modulefinder,...

•  Execution Provenance
–  Profiling and reflection (reimplementation of I/O functions)

Provenance in CTA Public Archive

•  Pack of data files in a working session
•  Connection with Local Desktop Provenance?

Querying with Provenance
Input Dimensions
•  Identifier (entity/activity/agent)
•  Focus

–  Data progenitors
–  Processes involved
–  Agents responsibility
–  Versioning

•  Representation
–  Graph
–  Prov. File/VOTable
– Whole Pack with Data Products

•  Time direction (back/forward)
•  Granularity
•  Parameter vs. Language based queries

Exposing Provenance
Response Dimensions
•  Representation

–  Graph
–  Prov. File/VOTable
– Whole Pack with Data Products

•  Analysis and Inspection
–  Graph
–  Diff-based
–  Browseable and granularity (Links to prov. services in Datalink)

•  Pack structure à Reproducibility
–  Prov. file as the descriptor of a pack of interlinked files
–  Data, documentation, scripts,...

Storing Provenance in Archive
– Provenance is about relationships
– Despite their name RDBs are not well suited for relationships
– Fixed schema of RDBs do not adapt well to changes
– Relationships are first priority in noSQL/Graph databases

